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THE DATACENTER AS A COMPUTER

Database Systems /
Computer Systems Landscape

Appliance Relational DBMS
Small Cluster (transactional)
(1000s)

Rack-scale Key-value store
(10000+) In-memory Database

FIGURE 1.1: Typical elements in warehouse-scale systems: 1U server (left), 7" rack with Ethernet
switch (middle), and diagram of a small cluster with a cluster-level Ethernet switch/router (right).
Source: http://www.morganclaypool.com/doi/abs/10.2200/500193ED1V01Y200905CAC006

Database Grid

* 8 Dual-processor x64
database servers

OR

« 2 Eight-processor x64
database servers

Intelligent Storage Grid

+ 14 High-performance low-cost
storage servers

+ 100 TB High Performance disk,
or
336 TB High Capacity disk
+5.3 TB PCI Flash

*Data mirrored across storage
servers

InfiniBand Network

» Redundant 40Gb/s switches

« Unified server & storage
network

Source: http://www.oracle.com/us/products/database/exadata/overview /index.html



The Advent of SSDs

Balanced Systems Energy Efficient Storage
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Host

Logical address space

Solid State Drives (SSDs)
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Response time (ms)

ethodology (1): Device state

easuringSamsungSSD RW performance

= Qut-of-the-box... and after fillingthe device!!! (similar behavior on Intel
SSD)
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The Challenges

AWS 12.8xlarge instance: 32 vCPU, 244GiB RAM, 8x800 GB SSD, $6.82/h

SSD I/0 Performance

To ensure the best IOPS performance from your 12 instance, we recommend that you use the most recent version of the Amazon
Linux AMI, or another Linux AMI with kernel version 3.8 or later. If you use a Linux AMI with kernel version 3.8 or later and utilize
all the SSD-based instance store volumes available to the instance, you can get at least the minimum random IOPS (4,096 byte
block size) listed in the following table. Otherwise, you'll get lower IOPS performance than what is shown in the table.

Instance Size Read IOPS First Write IOPS
i2.xlarge 35,000 35,000
12.2xlarge 75,000 75,000
i2.4xlarge 175,000 | 155,000

i2.8xlarge 365,000 315,000

As you fill the SSD-based instance storage for your instance, the number of write IOPS that you can achieve decreases. This is due
to the extra work the SSD controller must do to find available space, rewrite existing data, and erase unused space so that it can
be rewritten. This process of garbage collection results in internal write amplification to the SSD, expressed as the ratio of SSD
write operations to user write operations. This decrease in performance is even larger if the write operations are not in multiples of
4,096 bytes or not aligned to a 4,096-byte boundary. If you write a smaller amount of bytes or bytes that are not aligned, the SSD
controller must read the surrounding data and store the result in a new location. This pattern results in significantly increased
write amplification, increased latency, and dramatically reduced 1/0 performance.

SSD controllers can use several strategies to reduce the impact of write amplification. One such strategy is to reserve space in the
SSD instance storage so that the controller can more efficiently manage the space available for write operations. This is called
over-provisioning. The SSD-based instance store volumes provided to an 12 instance don't have any space reserved for over-
provisioning. To reduce write amplification, you should leave 10% of the volume unpartitioned so that the SSD controller can use it
for over-provisioning. This decreases the storage that you can use, but increases performance.

You can also use the TRIM command to notify the SSD controller whenever you no longer need data that you've written. This
provides the controller with more free space, which can reduce write amplification and increase performance. For more information
about using TRIM commands, see the documentation for the operating system for your instance.

Cloud provider
How to design and characterize

the 10 service?

System designer
What is the impact of SSDs

on software design,
in particular
on database systems?

Focus of CLyDE /

http://docs.aws.amazon.com/AWSEC2 /latest/UserGuide/i2-instances.html

Database Administrator

How to tune for performance?




Operating

System Applications

Hardware

The CLyDE Hypothesis

Logical View of a Computer System

Web server

Application server

“This project 1s based on the
insight that the strict layering
that has been so successful for
designing database systems on
top of magnetic disks i1s no
longer applicable to flash
devices. In other words, the
complexity of flash devices
cannot be abstracted away 1f 1t
results 1n unpredictable and

- suboptimal performance.”

SSD moving from memory
to communication abstractions.



The CLyDE Goals

_—

“The goal of this project is to explore how
flash devices, operating system and database
system can be designed together to improve
overall performance. Such a co-design is
particularly important for the next generation
database appliances (e.g., Oracle’s Exadata or
Neteeza’s TwinFin), or cloud-based relational
database systems (e.g., Microsoft SQL Azure)
for which well-suited flash components must
be specified. More generally, our goal is to
influence the evolution of flash devices and
commodity database systems for the benefit
of data intensive applications. *

Fusion-10

—

EMC
Samsung

Micron
Hitachi

Rel. Work: UCSD, MIT, CMU,
Princeton, Baidu, U.Wisconsin.




How to design for SSDs?

Business as usual

* Layered design
e SSD as block device
e SSD as a black box

* Performance model for SSD
to drive design decisions

/Lessons learnt [ciDR’09][Sigmod’'10][DEB’10]: \

- Performance varies across SSDs, in
time for a SSD (with firmware
updates, depending on IO history)

- Performance varies for a given 10

pattern with target size, with
k concurrency, with submission rate/

Application

SSD controller

1

block device
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How to design for SSDs?

Application ]

4 )

File system

(prosection policy} User space

driver
(issue and
completion)

Kernel
(virtualization
policy)

Moneta-D
(virtualization, protection
enforcement, and execution)

~
W W W W W e e e e e e -

Moneta-D [asplos12]
Caulfield et al., UCSD




CLyDE Project

* Exploring the design space for Host-SSD co-
design:
— EagleTree [Niv Dayan]

e Simulated SSD/0OS/apps for broad exploration of design
space (discrete event simulation)

* Insightsabout GC, DB indexing
* http://github.com/ClydeProjects/EagleTree
— LightNVM [Matias Bjgrling]
* Host-side SSD managementto experimentwith actual
OS/apps (wall time clock)
* Linux supportfor Open-channelSSDs
* http://github.com/MatiasBjorling/LightNVM




~ Linux Block Layer:

,&o& Introducing Multiqueue SSD Access on Multi-core Systems
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i Joe Williams Lxv +& Follow
williamsjoe

Linux Block 10: Introducing Multi-
queue SSD Access on

Multi-core Systems (coming in linux
3.13) kernel.dk/blk-mq.pdf

4 Reply 4£3 Retweet % Favorite <+ More



https://github.com/ClydeProjects/EagleTree

New Insights about GC policies

Applications Exploring extended interface
(Workload generator) impact on applications
||

Operating System
(10 scheduler)

Exploring the OS
scheduling strategies

1t
Exploring the SSD controller
SSD Controller design space
Mapping 10 scheduling strategies
10 Scheduling GC / WL strategies

Garbage Collection (GC)
Wear Leveling (WL)

Handling extended interface
etc...

EagleTree

LUN

LUNH [LuNH [Lun
LUNH [LuNH [Lun

UN
UN

Flash memory array

Exploring HW design space

Nb of channels

« Nb of LUNs / channel

Chip configuration
RAM / Safe RAM quantity
etc...

Exploring cross-layer optimizations

Write-amplification

Closed-form equation for
write-amplification

25

20

15

10

migrations / interval

migrations / interval

90000

80000

70000

60000

50000

40000

30000

20000

10000

90000

80000

70000

60000

50000

40000

30000

o

LRU
greedy

120 140

intervals of 50,000 writes

20 40 60 80 100 160 180
intervals of 50,000 writes
—— LRU
f
‘\\ —— greedy
1 1
5 10 5 20 35

200



More Insights about GC Policies

 K-modal workload:
— Data grouped based on update frequency

— Previous work:
» Each flash block is dedicated to a single group

— Questions:
1. How to partition over-provisioned blocks across groups?
2. How to deal with changing update frequencies?
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Adapting to Changing Workloads

WOLF:

— dynamically measures update frequency
— adapts the number of groups
* Too few/many groups harm GC efficiency

— triggers garbage-collection aggressively to re-distribute over-provisioned space
across groups (from cooling to heating groups)
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Linux Abstractions for Open-Channel SSDs

* Extensible
— Single level of mapping

ot erece between Applications and
e i"'""'"""'""""BEé}{-'c';}}é}irléfs'éS physical storage
L[] [orow | ~« Modular
| — | o — SSD Manage mhentIOI X
i i X g components should be
v v replaceable
DRAM Channel Channel :
Controller ngue que () LOW Ove rh ead
_t ' — Host-side SSD
DRAM NAND Flash NAND Flash i managementshould not

get in the way of
performance, still provide
consistency, durability



LightNVM Design (1/3)

Open-Channel SSDs
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LightNVM

Performance
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LightNVM: Next Steps

e More research ...

— New Targets (B Forest, ...)
— New Open-channel SSDs (Lightstor, ...)
— SSD Management variants (WOLF)

e Open-source contributions

— Linux
* Linux Plumber Workshop on Open-channel SSDs
* Lower RAM occupation, better performance
— Lightstor foundation
e Jointwork with GS Madhususan at lIT Chennai
e Contributionto RapidlO (ITUis now a member)

* http://github.com/ MatiasBjorling/LightNVM




B-Forest

* Tree Logarithmic method
for database indexing

— Writes grouped in chunks,
updated at the same time

— Multiway merges to leverage
SSD parallelism

— Bloomfiltersto speed up
lookups

A variant of the block target in LightNVM

WOLF

* Garbage Collection

— Flash blocks partitionned in
groups based on update
frequency

— Fixed overprovisioning per
group (and local GC per
group) dominates global over-
provisioning (and global GC)

— WOLF block manager adapts
to changingupdate
frequencies

» Aggressive GC for cooling

groups to re-distribute over-
provisioning across groups.

A variant of the LightNVM Adress Space
Manager and page-based GC




Dissemination

Publications

Niv Dayan, Martin Kjeer Svendsen, Matias Bjgrling,

Philippe Bonnet, Luc Bouganim. EagleTree: Exploring the

Design Space of SSD-Based Algorithms. VLDB 2012.
Matias Bjgrling, Philippe Bonnet, Luc Bouganim, Niv
Dayan. The Necessary Death of the Block Device
Interface. CIDR 2013.

Matias Bjgrling, Jens Axboe, David Nellans, Philippe
Bonnet. Linux Block I0: Introducing Multi-Queue SSD
Access on Multicore Systems. Systor 2013.

Michael Wei, Matias Bjgrling, Philippe Bonnet, Steven
Swanson. |/O Speculation in the Microsecond Era.
Usenix ATC2014.

Submitted:

Niv Dayan, Philippe Bonnet, Dennis Shasha. Blooming
Logarithmic B Forests: A Fast Access Method for Solid
State Drives.

Matias Bjgrling, Jesper Madsen, Philippe Bonnet.
LightNVM: Operating System Abstractions for Open-
Channel Solid State Drives.

Niv Dayan, Luc Bouganim, Philippe Bonnet. WOLF:
Improving SSD Performance by Exploiting Update
Frequencies for Dynamically Changing Workloads

Talks

e Academic

— Conferences: VLDB (8/12,
8/13), CIDR (1/13), Systor
(7/13)

— Visits: EPFL (2/14), INRIA
Montpellier (5/14)

— Stay abroad:UCSD, NYU

* |ndustrial
— Linux Venues (3/14, 10/14)

— Hitachi(4/14), Micron (4/14),

EMC (9/14)



Strengthening Danish Research

* We are collaborating/competing with US
universities
— US: PhD takes 5 years
— DK: PhD + Postdoc

* We are collaborating with international
companies/consortium
— Open-source contributions (Linux)

— Keeping jobs in DK: internship, consulting anchored
around research projects




New Challenges

Emerging Byte-addressable Non Volatile Memories (e.g., PCM)
SSDs are entering the microsecond era.

SSDs and persistentmemories require a profound redesign of
system software.

With Persistent Memories, persistenceis no longer tied to
secondary storage.

— How can the OS handle Persistent Memories:
(1) By extendingvirtual memory
(2) By providing a block device interface for such memories
(3) By designing new file systems tailored to their characteristics



Energy-Proportional
Transaction Management

* A proposal:backto the good-old single-level store:

— durability — how/when is data manipulated in the virtual address space
made durable?

— concurrency — how to design data structures that can perform efficiently
when accessed concurrently

— security — how to enforce access control but also integrity for a given
portion of memory or storage?

* Anapproach:
— LightNVM common services extended to Persistent Memories

— Transactional VMM as LightNVM target

* Now with energy proportionality as a design goal
— Requires new programming models!




