http://clyde.itu.dk
A project funded by the Danish Council for Independent Research

CLyDE Mid-Flight:

What we have learned about the

SSD-Based |0 Stack

Philippe Bonnet — phbo@itu.dk

Joint work with Luc Bouganim (INRIA), Niv Dayan (ITU), Matias Bjgrling (ITU),
Jesper Madsen (ITU)

In Lyllaboration with Jens Axboe (Facebook), David Nellans (Nvidia), Zvonimir
Bandic (HGST), Qingbo Wang (HGST), Aviad Zuck (Tel Aviv Univ.)

The Advent of SSDs

Balanced High-End Systems

1400000
1200000 —
1000000 —
800000 —
600000
400000

200000 .
O ; —_— ; _— ; ;

4K Read IOPS

4 N

High throughput/Low latency
reduces the gap between RAM and 10
performance

\ /

Energy Efficient Storage

4 N

Fewer Watts/TB drives higher data
density on the cloud (e.g., OCZ vertex
4: 5W/TB; Toshiba MBF: 22W/TB)

- /

Flash in User Databases

2010 2011

‘_ RAM ‘

FlashCache Software

&
1 TB compresse

2 1B uncompressed
1.5 TB compressed

Jason Taylor, Flash Memory Summit, 08/13

The Challenges

AWS 12.8xlarge instance: 32 vCPU, 244GiB RAM, 8x800 GB SSD, $6.82/h

SSD I/0 Performance

To ensure the best IOPS performance from your 12 instance, we recommend that you use the most recent version of the Amazon
Linux AMI, or another Linux AMI with kernel version 3.8 or later. If you use a Linux AMI with kernel version 3.8 or later and utilize
all the SSD-based instance store volumes available to the instance, you can get at least the minimum random IOPS (4,096 byte
block size) listed in the following table. Otherwise, you'll get lower IOPS performance than what is shown in the table.

Instance Size Read IOPS First Write IOPS
i2.xlarge 35,000 35,000
12.2xlarge 75,000 75,000
12.4xlarge 175,000 155,000

i2.8xlarge 365,000 315,000

As you fill the SSD-based instance storage for your instance, the number of write IOPS that you can achieve decreases. This is due
to the extra work the SSD controller must do to find available space, rewrite existing data, and erase unused space so that it can
be rewritten. This process of garbage collection results in internal write amplification to the SSD, expressed as the ratio of SSD
write operations to user write operations. This decrease in performance is even larger if the write operations are not in multiples of
4,096 bytes or not aligned to a 4,096-byte boundary. If you write a smaller amount of bytes or bytes that are not aligned, the SSD
controller must read the surrounding data and store the result in a new location. This pattern results in significantly increased
write amplification, increased latency, and dramatically reduced 1/0 performance.

SSD controllers can use several strategies to reduce the impact of write amplification. One such strategy is to reserve space in the
SSD instance storage so that the controller can more efficiently manage the space available for write operations. This is called
over-provisioning. The SSD-based instance store volumes provided to an 12 instance don't have any space reserved for over-
provisioning. To reduce write amplification, you should leave 10% of the volume unpartitioned so that the SSD controller can use it
for over-provisioning. This decreases the storage that you can use, but increases performance.

You can also use the TRIM command to notify the SSD controller whenever you no longer need data that you've written. This
provides the controller with more free space, which can reduce write amplification and increase performance. For more information
about using TRIM commands, see the documentation for the operating system for your instance.

Cloud provider
How to design and characterize

the 10 service?

DBMS designer
What is the impact of this new

|0 stack on DBMS design?

Focus of CLyDE /

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/i2-instances.html

Database Administrator

How to tune for performance?

How to design for SSDs?

Business as usual
* Layered design
e SSD as block device

e SSD as a black box

 Performance model for SSD
to drive design decisions

/Lessons learnt [ciDrR'09][Sigmod’10][DEB’10]: \

- Performance varies across SSDs, in
time for a SSD (with firmware
updates, depending on 10 history)

- Performance varies for a given 10

Application

pattern with target size, with
K concurrency, with submission rate/

SSD controller

il

block device

Logical address space

Read
Write
Trim

SSD Internals

—s
_» Mapping —>

—> Read
i Program
S E
9 rase
Q.
__________________ 7]
g
Shared Internal data é LUN' = | LUN = | LUN = [LUN =
structures o
S
__________________ 4 LUN (— | LUN (H | LUN }H | LUN HH
=
Garbage Wear Leveling Lun H | un i [wun | N -
collection

Flash Translation Layer (FTL)
Implemented on SSD controller or SSD driver

Flash memory array

How to design for SSDs?

Application

- : -
File system |,
rotection policy) |!
P lon policy) '] User space
. ! driver
(1| (issue and
Kernel '| completion)
(virtualization I
policy) :
_____________'k
Moneta-D

(virtualization, protection
enforcement, and execution)

Moneta-D [asplos12]
Caulfield et al., UCSD

New approaches

* Layers revisited:
— OS bypassed (e.g., Moneta-D [aspios12])

— Avoid duplication of work (e.g., from
ARIES to MARS [sosp13))

* Cross-layer optimizations
— Trim command [Hpca11]
— Extending fadvise (nvmi2]

* New SSD interface:

— Communication abstraction to
replace memory abstraction

— More complex address space

CLyDE Approach

Keep traditional layers

2. Focus on SSD interface to support cross-
ayers optimization

Talk outline:

— SSD Simulation: EagleTree and LightNVM
— Multi-queue design for the Linux Block Layer
— Tree-Based SSD interface for FS/SSD co-design

Exploring the Designh Space

 Fundamental questions:

— What is the relative importance of data placement and scheduling
within the FTL?

— Should scheduling adapt to HW configuration? to app workload?
* Design choices:

— within each layer

— across layers
* Two complementary approaches:

— EagleTree we13): Simulated SSD driver/controller to experiment with
actual OS/apps
e Wall-time clock
— LightNVM nwwwia: Simulated SSD/0OS/apps to experiment with

* Dynamic run-time clock

https:

ithub.com/nivdayan/EagleTree

EagleTree wwe1s

Applications Exploring extended interface
(Workload generator) impact on applications
1
Operating System Exploring the OS
(IO scheduler) scheduling strategies
it
Exploring the SSD controller
SSD Controller design space
* Mapping) » 10 scheduling strategies
* 10 Scheduling + GC /WL strategies

* Garbage Collection (GC)
* Wear Leveling (WL)

* Handling extended interface
* etc...

LUN

LuN} [Lun

Flash memory array

Exploring HW design space
* Nb of channels

* Nb of LUNs / channel
Chip configuration

* RAM / Safe RAM quantity
* etc...

Exploring cross-layer optimizations

Frequency Frequency Frequency

Frequency

Niv Dayan: nday@itu.dk

Wait time histogram (smart greedy, Used space (%) = 70)

10* B Application I10s, Reads+writes
B Internal operations, All
10° 7
1 T T T T T T T T
0 5000 10000 15000 20000 25000 30000 35000 40000 45000
Event wait time (us)
Wait time histogram (smart lazy, Used space (%) = 70)
10° B Application I0s, Reads+writes
B Internal operations, All
10° 7
1 T T T T
0 5000 10000 15000 20000 25000 30000 35000 40000 45000
Event wait time (us)
Wait time histogram (naive greedy, Used space (%) = 70)
10" B Application 10s, Reads+writes
B Internal operations, All
10°
1
0 5000 10000 15000 20000 25000 30000 35000 40000 45000
Event wait time (us)
Wait time histogram (naive lazy, Used space (%) = 70)
10 B Application I0s, Reads+writes
B Internal operations, All
102 =

0 5000 10000 15000 20000 25000 30000 35000 40000 45000
Event wait time (us)

nght NVM nvmwig

LNVM+OpenSSD [l
LNVM+SimNAND [

LNVM+NV Ve - I
FRP I
Moneta-D I

Matias Bjgrling: mabj@itu.dk

Evaluation Host

Userspace

Process

[Process |

[Process

Kernel

| File-system |

A

E

Block-layer

] Block/object/etc. Interface |

Ethernet (10Gbit/40Gbtt), Infiniband (56 Gbit), PCI-E, Local, etc.

LightNVM Host

LightNVM Kernel Module
Required Functionality

Evaluation Functionality

Translation Tables

Hints

Compression

LNVM+Mem - I ———

Wear-leveling
ECC

|
| Garbage Collection
|
|

|
|
Deduplication |
Custom (Btree, KV, etc.) |

0 200000 400000 600000 800000
IOPS (4K) LightNVM)
LightNVM Hardware i)
NVM Device [Controller |[NVM | NVM | NVM [NVM |
Platform BlueSSD VSSIM | OpenSSD | FRP Moneta LightNVM
Type Custom HW | SW HW Custom HW | Custom HW | HW/SW
NVM NAND NAND | NAND NAND PCM NAND/PCM/etc.
Interface SATA N/A SATA PCI-E/Net PCI-E/Net SATA/PCI-e/Net/Local
Cost Low Free Low High High Varies
Processing Power | Low N/A Low High Low High

Linux Block IO

Userspace
Process Process
AN 7
\ /
Kernel (Y
| Submit 10 |
Block Layer |
N
Submission/Completion
Staging (Merge, Reord., etc.)
I > Request Queue
Fairness Scheduling
10 Accounting
[o
Block device specific driver
Status / Completion
Interrupt v

Single queue (e.g. SATA) capable hardware device

Scalability Problem

1_12'gm 1 socket 2 socket
s /\/_
500k
Sandy Westmere- | Nehalem- | Westmere-
Platform (Intel) BrideeE | EP EX EX 250I6
Processor i7-3930K | X5690 X7560 E7-2870 g 1 2 3 4 5 6 2 4 6 8 10 12
Num. of Cores | 6 12 32 80 o
Speed (Ghz) 3.2 3.46 2.66 2.4 1.5M 4 socket 8 socket
L3 Cache (MB) | 12 12 24 30 1-2%
NUMA nodes 1 2 4 8 750k
500k
250|6 /-\- q‘

5 10 15 20 25 30 10 20 30 40 50 60 70 80
Number of Processes

Kernel ;

Submit IO
I Block Layer Acquire/Release HW Interrupts
[Submission/Completion] Ownership

Request Queue
Lock

[Staging (Merge, Reord., etc.)]

[Faimess Scheduling |

Remote Memory
[10 Accounting] Accesses

|

Block device specific driver

Multiqgueue Approach

Userspace
Process Process
S~
Kernel libaio and others]
A |
| Submit |0 |
l {
'\
Submission/Completion y A ~ Block Layer
Staging (Merge, Insertion)
Tagging > Per Core
I Software Queues
Fairness Scheduling
10 Accounting
< Hardware
Dispatch Queues
Block device specific driver
Status / Completion T T
Interrupt v v

Single or multi-queue capable hardware device

Jens Axboe’s design

Latency (us)

Experimental Results systons

1 21 :m 1 socket 2 socket 4 socket 8 socket
o 10M MQ
% 7.5M SQ
- 5M Raw

2.51\3 - / A ﬂ

1 2 3 4 5 6 2 4 6 8 10 12 5 10 15 20 25 30 10 20 30 40 50 60 70 80
Number of Cores

e 1 socket 2 socket 4 socket mm

SQ .
100 MQ A
Raw
|——

1 2 3 4 10 12 15 20 25 30 10 20 30 40 50 60 70 80
Number of Cores

15M &ag
U)121.gm Raw (Original)
o MQ (Original)

O 7.5M
5M
2.5M

10 20 30 40 50 60 70 80
Number of Cores

i Joe Williams Lxv +& Follow
williamsjoe

Linux Block 10: Introducing Multi-
queue SSD Access on

Multi-core Systems (coming in linux
3.13) kernel.dk/blk-mq.pdf

4 Reply €3 Retweet % Favorite ee+ More

S NERYEE JNE

Next Bottleneck within Linux 1O Stack

 Page cache

1.75ME- ‘
= 4~ AIODIO - MMAP Buf
1.5M E -~ AIO Buf -#- MMAP DIO
1.25ME-
P -
% 1M E_ —& L 2
— 750k ;— -
500k —_/'/
250K g¢— —8— —% %
O= L L 1
1 2 3 4

Number of Cores

Beyond block device interface

* File System and SSD today:
— File systems has no clear performance model for SSD
— SSD makes un-informed assumptions about file system

* Goal: File System / SSD Co-Design

— SSD exposes an abstraction that is well suited for File System

— SSD takes leverages this abstraction to optimize data
placement/scheduling and thus minimize GC operations

SSD Abstraction

* SSD must provide a * |Idea: What if SSD
mapping from logical to provides a Tree-Based
physical address spaces interface?

* File systems in Linux * Approach: Rely on
abstracted by VFS (files, LightNVM as
dentries, inodes, experimentation platform
superblocks) — Tree-interface supported

e Btrfs insight: What if within the LightNVM driver

(server-side)

— B-link as tree structure (for
a start)
— CLyDE FS layer mapping

VFS abstractions onto
Tree-based SSD interface

every internal data
structure in a file system
was an entry in a B-tree?

Jesper Madsen: jmad@itu.dk

Tree-Based SSD Architecture

Storage Host

‘ Virtual File System ‘

{

‘ ClydeFS ‘

{

‘ Tree-based interface ‘

AoE (10Gbit Link)

* Tree-Based interface

— CreateTree

— RemoveTree

— InsertNode

— RemoveNode

— WriteNode

— ReadNode

— TruncateNode

Bandwidth (kb/s)

?

:

%

Initial Results

Buffered I0s on RAM-disk(ext2) and in-RAM B+-tree (CLyDEFS)

clydefs

~
L

clydefs

ext2

o
1

Avg. Latency (usec)
e s s b

3 4
Data sync interval (I0's/sync)

3 4
Data sync interval (10's/sync)

Constant throughput due to no 10 scheduling in current

CLyDEFS incarnation

Future Work: Mapping onto NVM, comparison with Btrfs

Mid-Flight Conclusions

Infrastructure in place to explore cross-layer design
— EagleTree and LightNVM

Bottleneck chasing throughout the Linux 10 stack (on
multicore)

— Much similar to bottleneck chasing in Shore-MT

— DBMS storage manager is next

Room for cross-layer optimization

— Tree-based structure is a good candidate as replacement for
block device interface (i) to convey appropriate information
from DBMS to OS to SSD, and (ii) to manage contention

Need to address challenges of DBMS running on SSD-
based virtualized environments

