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The Advent of SSDs
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The Challenges

AWS 12.8xlarge instance: 32 vCPU, 244GiB RAM, 8x800 GB SSD, $6.82/h

SSD I/0 Performance

To ensure the best IOPS performance from your 12 instance, we recommend that you use the most recent version of the Amazon
Linux AMI, or another Linux AMI with kernel version 3.8 or later. If you use a Linux AMI with kernel version 3.8 or later and utilize
all the SSD-based instance store volumes available to the instance, you can get at least the minimum random IOPS (4,096 byte
block size) listed in the following table. Otherwise, you'll get lower IOPS performance than what is shown in the table.

Instance Size Read IOPS First Write IOPS
i2.xlarge 35,000 35,000
12.2xlarge 75,000 75,000
12.4xlarge 175,000 155,000

i2.8xlarge 365,000 315,000

As you fill the SSD-based instance storage for your instance, the number of write IOPS that you can achieve decreases. This is due
to the extra work the SSD controller must do to find available space, rewrite existing data, and erase unused space so that it can
be rewritten. This process of garbage collection results in internal write amplification to the SSD, expressed as the ratio of SSD
write operations to user write operations. This decrease in performance is even larger if the write operations are not in multiples of
4,096 bytes or not aligned to a 4,096-byte boundary. If you write a smaller amount of bytes or bytes that are not aligned, the SSD
controller must read the surrounding data and store the result in a new location. This pattern results in significantly increased
write amplification, increased latency, and dramatically reduced 1/0 performance.

SSD controllers can use several strategies to reduce the impact of write amplification. One such strategy is to reserve space in the
SSD instance storage so that the controller can more efficiently manage the space available for write operations. This is called
over-provisioning. The SSD-based instance store volumes provided to an 12 instance don't have any space reserved for over-
provisioning. To reduce write amplification, you should leave 10% of the volume unpartitioned so that the SSD controller can use it
for over-provisioning. This decreases the storage that you can use, but increases performance.

You can also use the TRIM command to notify the SSD controller whenever you no longer need data that you've written. This
provides the controller with more free space, which can reduce write amplification and increase performance. For more information
about using TRIM commands, see the documentation for the operating system for your instance.

Cloud provider
How to design and characterize

the 10 service?

DBMS designer
What is the impact of this new

|0 stack on DBMS design?

Focus of CLyDE /

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/i2-instances.html

Database Administrator

How to tune for performance?




How to design for SSDs?

Business as usual
* Layered design
e SSD as block device

e SSD as a black box

 Performance model for SSD
to drive design decisions

/Lessons learnt [ciDrR'09][Sigmod’10][DEB’10]: \

- Performance varies across SSDs, in
time for a SSD (with firmware
updates, depending on 10 history)

- Performance varies for a given 10
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Logical address space
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How to design for SSDs?
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New approaches

* Layers revisited:
— OS bypassed (e.g., Moneta-D [aspios12])

— Avoid duplication of work (e.g., from
ARIES to MARS [sosp13))

* Cross-layer optimizations
— Trim command [Hpca11]
— Extending fadvise (nvmi2]

* New SSD interface:

— Communication abstraction to
replace memory abstraction

— More complex address space



CLyDE Approach

Keep traditional layers

2. Focus on SSD interface to support cross-
ayers optimization

Talk outline:

— SSD Simulation: EagleTree and LightNVM
— Multi-queue design for the Linux Block Layer
— Tree-Based SSD interface for FS/SSD co-design



Exploring the Designh Space

 Fundamental questions:

— What is the relative importance of data placement and scheduling
within the FTL?

— Should scheduling adapt to HW configuration? to app workload?
* Design choices:

— within each layer

— across layers
* Two complementary approaches:

— EagleTree we13): Simulated SSD driver/controller to experiment with
actual OS/apps
e Wall-time clock
— LightNVM nwwwia: Simulated SSD/0OS/apps to experiment with

* Dynamic run-time clock



https:

ithub.com/nivdayan/EagleTree

EagleTree wwe1s

Applications Exploring extended interface
(Workload generator) impact on applications
1
Operating System Exploring the OS
(IO scheduler) scheduling strategies
it
Exploring the SSD controller
SSD Controller design space
* Mapping ) » 10 scheduling strategies
* 10 Scheduling + GC /WL strategies

* Garbage Collection (GC)
* Wear Leveling (WL)

* Handling extended interface
* etc...

LUN

LuN} [Lun

Flash memory array

Exploring HW design space
* Nb of channels

* Nb of LUNs / channel
Chip configuration

* RAM / Safe RAM quantity
* etc...

Exploring cross-layer optimizations
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Linux Block IO
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Scalability Problem
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Multiqgueue Approach
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Next Bottleneck within Linux 1O Stack
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Beyond block device interface

* File System and SSD today:
— File systems has no clear performance model for SSD
— SSD makes un-informed assumptions about file system

* Goal: File System / SSD Co-Design

— SSD exposes an abstraction that is well suited for File System

— SSD takes leverages this abstraction to optimize data
placement/scheduling and thus minimize GC operations



SSD Abstraction

* SSD must provide a * |Idea: What if SSD
mapping from logical to provides a Tree-Based
physical address spaces interface?

* File systems in Linux * Approach: Rely on
abstracted by VFS (files, LightNVM as
dentries, inodes, experimentation platform
superblocks) — Tree-interface supported

e Btrfs insight: What if within the LightNVM driver

(server-side)

— B-link as tree structure (for
a start)
— CLyDE FS layer mapping

VFS abstractions onto
Tree-based SSD interface

every internal data
structure in a file system
was an entry in a B-tree?
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Tree-Based SSD Architecture

Storage Host

‘ Virtual File System ‘

{

‘ ClydeFS ‘

{

‘ Tree-based interface ‘

AoE (10Gbit Link)

* Tree-Based interface

— CreateTree

— RemoveTree

— InsertNode

— RemoveNode

— WriteNode

— ReadNode

— TruncateNode
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Mid-Flight Conclusions

Infrastructure in place to explore cross-layer design
— EagleTree and LightNVM

Bottleneck chasing throughout the Linux 10 stack (on
multicore)

— Much similar to bottleneck chasing in Shore-MT

— DBMS storage manager is next

Room for cross-layer optimization

— Tree-based structure is a good candidate as replacement for
block device interface (i) to convey appropriate information
from DBMS to OS to SSD, and (ii) to manage contention

Need to address challenges of DBMS running on SSD-
based virtualized environments



